Complete asymptotic expansions of the spectral function for symbolic perturbations of almost periodic Schrödinger operators in dimension one

نویسندگان

چکیده

In this article we consider asymptotics for the spectral function of Schrödinger operators on real line. Let $P\\colon L^2(\\mathbb{R})\\to L^2(\\mathbb{R})$ have form $$ P:=-\\frac{d^2}{dx^2}+W, where $W$ is a self-adjoint first order differential operator with certain modified almost periodic structure. We show that kernel projector, $\\mathbf{1}{(-\\infty,\\lambda^2]}(P)$ has full asymptotic expansion in powers $\\lambda$. particular, our class potentials stable under perturbation by formally smooth, compactly supported coefficients. Moreover, includes \_dense pure point spectrum. The proof combines gauge transform methods Parnovski–Shterenberg and Sobolev Melrose's scattering calculus.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Asymptotic Expansion of the Spectral Function of Multidimensional Almost-periodic Schrödinger Operators

We prove the complete asymptotic expansion of the spectral function (the integral kernel of the spectral projection) of a Schrödinger operator H = −∆ + b acting in R when the potential b is real and either smooth periodic, or generic quasi-periodic (finite linear combination of exponentials), or belongs to a wide class of almost-periodic functions.

متن کامل

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

Complete Asymptotic Expansion of the Integrated Density of States of Multidimensional Almost-periodic Schrödinger Operators

We prove the complete asymptotic expansion of the integrated density of states of a Schrödinger operator H = −∆+b acting in R when the potential b is either smooth periodic, or generic quasi-periodic (finite linear combination of exponentials), or belongs to a wide class of almost-periodic functions.

متن کامل

Almost Periodic Schrδdinger Operators III . The Absolutely Continuous Spectrum in One Dimension

We discuss the absolutely continuous spectrum of H = — d 2 /dx 2 + V(x) with F almost periodic and its discrete analog (hu)(n) = u(n +1) + u(n — 1) + V(ri)u(ri). Especial attention is paid to the set, A, of energies where the Lyaponov exponent vanishes. This set is known to be the essential support of the a.c. part of the spectral measure. We prove for a.e. Fin the hull and a.e. E in A, H and h...

متن کامل

Asymptotic Bounds for Spectral Bands of Periodic Schrödinger Operators

The precise upper and lower bounds for the multiplicity of the spectrum band overlapping are given for the multidimensional periodic Schrödinger operators with rational period lattices. These bounds are based on very recent results on the lattice point problem. §1. Main result 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of spectral theory

سال: 2022

ISSN: ['1664-039X', '1664-0403']

DOI: https://doi.org/10.4171/jst/396